Intelligent Variable Emittance Panels Using New, ?True? Solid Electrolyte, Phase I

Completed Technology Project (2003 - 2003)

Project Introduction

This firm has, in ongoing work in collaboration with the Air Force, NASA and JPL, developed a unique Variable Emittance technology based on the electrochromism of unique Conducting Polymers. This comprises thin (< 0.5 mm), flexible, lightweight (0.16 g/cm²), variable area (0.5 cm² to 0.5 m^2), very low cost flat panels. Delta Emittance (DE) of 0.33 in spacequalified devices, and 0.53 in vacuum-durable unsealed devices, has been demonstrated. All space durability tests e.g. thermal vacuum, gammaradiation and solar wind have been passed. A 90 cm2 panel and Controller are scheduled to fly on NASA?s ST5 microsatellite mission in 2004. A key technical barrier of this technology has however been the need to encapsulate and hermetically seal devices in CsI windows, due to a semi-solid electrolyte that does not function when completely desiccated. This causes the DE of > 0.53 in unsealed devices to fall to < 0.35 in sealed devices. The use of a justdiscovered, truly solid, room temperature molten salt electrolyte compatible with our electrochromic system will permit the use of unsealed devices, allowing DE of 0.53. Intelligent design, with embedded sensors reading Emittance directly, and coatings reducing Solar Absorptance to < 0.2, are also planned.

Primary U.S. Work Locations and Key Partners

Intelligent Variable Emittance Panels Using New, ?True? Solid Electrolyte, Phase I

Table of Contents

Project Introduction		
Primary U.S. Work Locations		
and Key Partners	1	
Organizational Responsibility		
Project Management		
Technology Areas		

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Center / Facility:

Jet Propulsion Laboratory (JPL)

Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Small Business Innovation Research/Small Business Tech Transfer

Intelligent Variable Emittance Panels Using New, ?True? Solid Electrolyte, Phase I

Completed Technology Project (2003 - 2003)

rganizations erforming Work	Role	Туре	Location
Jet Propulsion aboratory(JPL)	Lead Organization	NASA Center	Pasadena, California
 shwin-Ushas orp, Inc.	Supporting Organization	Industry Small Disadvantaged Business (SDB)	Holmdel, New Jersey

Primary U.S. Work Locations	
California	New Jersey

Project Management

Program Director:

Jason L Kessler

Program Manager:

Carlos Torrez

Project Manager:

Celestino Jun Rosca

Principal Investigator:

Prasanna Chandrasekhar

Technology Areas

Primary:

- TX14 Thermal Management Systems
 - □ TX14.2 Thermal Control
 Components and Systems
 □ TX14.2.3 Heat
 Rejection and Storage

